258 research outputs found

    AUTOMATED QUANTITATIVE ASSESSMENT OF CORONARY CALCIFICATION USING INTRAVASCULAR ULTRASOUND

    Get PDF
    Coronary calcification represents a challenge in the treatment of coronary artery disease by stent placement. It negatively affects stent expansion and has been related to future adverse cardiac events. Intravascular ultrasound (IVUS) is known for its high sensitivity in detecting coronary calcification. At present, automated quantification of calcium as detected by IVUS is not available. For this reason, we developed and validated an optimized framework for accurate automated detection and quantification of calcified plaque in coronary atherosclerosis as seen by IVUS. Calcified lesions were detected by training a supported vector classifier per IVUS A-line on manually annotated IVUS images, followed by post-processing using regional information. We applied our framework to 35 IVUS pullbacks from each of the three commonly used IVUS systems. Cross-validation accuracy for each system was >0.9, and the testing accuracy was 0.87, 0.89 and 0.89 for the three systems. Using the detection result, we propose an IVUS calcium score, based on the fraction of calcium-positive A-lines in a pullback segment, to quantify the extent of calcified plaque. The high accuracy of the proposed classifier suggests that it may provide a robust and accurate tool to assess the presence and amount of coronary calcification and, thus, may play a role in imageguided coronary interventions. (E-mail: [email protected]

    Mouse Transcobalamin Has Features Resembling both Human Transcobalamin and Haptocorrin

    Get PDF
    In humans, the cobalamin (Cbl) -binding protein transcobalamin (TC) transports Cbl from the intestine and into all the cells of the body, whereas the glycoprotein haptocorrin (HC), which is present in both blood and exocrine secretions, is able to bind also corrinoids other than Cbl. The aim of this study is to explore the expression of the Cbl-binding protein HC as well as TC in mice. BLAST analysis showed no homologous gene coding for HC in mice. Submaxillary glands and serum displayed one protein capable of binding Cbl. This Cbl-binding protein was purified from 300 submaxillary glands by affinity chromatography. Subsequent sequencing identified the protein as TC. Further characterization in terms of glycosylation status and binding specificity to the Cbl-analogue cobinamide revealed that mouse TC does not bind Concanavalin A sepharose (like human TC), but is capable of binding cobinamide (like human HC). Antibodies raised against mouse TC identified the protein in secretory cells of the submaxillary gland and in the ducts of the mammary gland, i.e. at locations where HC is also found in humans. Analysis of the TC-mRNA level showed a high TC transcript level in these glands and also in the kidney. By precipitation to insolubilised antibodies against mouse TC, we also showed that >97% of the Cbl-binding capacity and >98% of the Cbl were precipitated in serum. This indicates that TC is the only Cbl-binding protein in the mouse circulation. Our data show that TC but not HC is present in the mouse. Mouse TC is observed in tissues where humans express TC and/or HC. Mouse TC has features in common with both human TC and HC. Our results suggest that the Cbl-binding proteins present in the circulation and exocrine glands may vary amongst species

    Mass Spectrometry-Based (GeLC-MS/MS) Comparative Proteomic Analysis of Endoscopically (ePFT) Collected Pancreatic and Gastroduodenal Fluids

    Get PDF
    Objectives: The secretin-stimulated endoscopic pancreatic function test (ePFT) allows for the safe collection of gastroduodenal and pancreatic fluid from the duodenum. We test the hypothesis that these endoscopically collected fluids have different proteomes. As such, we aim to show that the ePFT method can be used to collect fluid enriched in pancreatic proteins to test for pancreatic function. Methods: Gastroduodenal and pancreatic fluid were collected sequentially from chronic pancreatitis patients undergoing an ePFT. Proteins from each fluid type were extracted using previously published optimized methods and subjected to GeLC-MS/MS analysis for protein identification and bioinformatics analysis. Results: Mass spectrometry analysis identified proteins that were exclusive in either gastroduodenal (46) or pancreatic fluid (234). Subsequent quantitative analysis revealed proteins that were differentially abundant with statistical significance. As expected, proteolytic enzymes and protease inhibitors were among the differentially detected proteins. The proteases pepsinogens and gastrin were enriched in gastroduodenal fluid, while common pancreatic enzymes (e.g., aminopeptidase N, chymotrypsin C, elastase-3A, trypsin, and carboxypeptidase A1, and elastase 2B) were found in greater abundance in pancreatic fluid. Similarly for protease inhibitors, members of the cystatin family were exclusive to gastroduodenal fluid, while serpins A11, B4, and D1 were exclusive to pancreatic fluid. Conclusions: We have shown that ePFT collection coupled with mass spectrometry can be used to identify differentially detected proteins in gastroduodenal and pancreatic fluids. The data obtained using GeLC-MS/MS techniques provide further evidence supporting the feasibility of using ePFT-collected fluid to study specific diseases of the upper gastrointestinal tract, such as chronic pancreatitis

    Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Get PDF
    BACKGROUND: The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1) and ASIC3 (acid sensing ion channel-3) respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. METHODS: The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons), and their soma diameter was measured. RESULTS: Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1(+)/ASIC3(- )neurons with probably slow conduction velocity (small soma, neurofilament 68-negative) were significantly more frequent among pleural (35%) than pulmonary afferents (20%). TRPV1(+)/ASIC3(+ )neurons amounted to 14 and 10% respectively. TRPV1(-)/ASIC3(+ )neurons made up between 44% (lung) and 48% (pleura) of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive). CONCLUSION: Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1(+)/ASIC3(- )neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli

    Evaluation of Functional Erythropoietin Receptor Status in Skeletal Muscle In Vivo: Acute and Prolonged Studies in Healthy Human Subjects

    Get PDF
    BACKGROUND: Erythropoietin receptors have been identified in human skeletal muscle tissue, but downstream signal transduction has not been investigated. We therefore studied in vivo effects of systemic erythropoietin exposure in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: The protocols involved 1) acute effects of a single bolus injection of erythropoietin followed by consecutive muscle biopsies for 1-10 hours, and 2) a separate study with prolonged administration for 16 days with biopsies obtained before and after. The presence of erythropoietin receptors in muscle tissue as well as activation of Epo signalling pathways (STAT5, MAPK, Akt, IKK) were analysed by western blotting. Changes in muscle protein profiles after prolonged erythropoietin treatment were evaluated by 2D gel-electrophoresis and mass spectrometry. The presence of the erythropoietin receptor in skeletal muscle was confirmed, by the M20 but not the C20 antibody. However, no significant changes in phosphorylation of the Epo-R, STAT5, MAPK, Akt, Lyn, IKK, and p70S6K after erythropoietin administration were detected. The level of 8 protein spots were significantly altered after 16 days of rHuEpo treatment; one isoform of myosin light chain 3 and one of desmin/actin were decreased, while three isoforms of creatine kinase and two of glyceraldehyd-3-phosphate dehydrogenase were increased. CONCLUSIONS/SIGNIFICANCE: Acute exposure to recombinant human erythropoietin is not associated by detectable activation of the Epo-R or downstream signalling targets in human skeletal muscle in the resting situation, whereas more prolonged exposure induces significant changes in the skeletal muscle proteome. The absence of functional Epo receptor activity in human skeletal muscle indicates that the long-term effects are indirect and probably related to an increased oxidative capacity in this tissue

    Gene expression in the rat brain: High similarity but unique differences between frontomedial-, temporal- and occipital cortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The six-layered neocortex of the mammalian brain may appear largely homologous, but is in reality a modular structure of anatomically and functionally distinct areas. However, global gene expression seems to be almost identical across the cerebral cortex and only a few genes have so far been reported to show regional enrichment in specific cortical areas.</p> <p>Results</p> <p>In the present study on adult rat brain, we have corroborated the strikingly similar gene expression among cortical areas. However, differential expression analysis has allowed for the identification of 30, 24 and 11 genes enriched in frontomedial -, temporal- or occipital cortex, respectively. A large proportion of these 65 genes appear to be involved in signal transduction, including the ion channel <it>Fxyd6</it>, the neuropeptide <it>Grp </it>and the nuclear receptor <it>Rorb</it>. We also find that the majority of these genes display increased expression levels around birth and show distinct preferences for certain cortical layers and cell types in rodents.</p> <p>Conclusions</p> <p>Since specific patterns of expression often are linked to equally specialised biological functions, we propose that these cortex sub-region enriched genes are important for proper functioning of the cortical regions in question.</p

    A Nutrition and Conditioning Intervention for Natural Bodybuilding Contest Preparation: Case Study.

    Get PDF
    Bodybuilding competitions are becoming increasingly popular. Competitors are judged on their aesthetic appearance and usually exhibit a high level of muscularity and symmetry and low levels of body fat. Commonly used techniques to improve physique during the preparation phase before competitions include dehydration, periods of prolonged fasting, severe caloric restriction, excessive cardiovascular exercise and inappropriate use of diuretics and anabolic steroids. In contrast, this case study documents a structured nutrition and conditioning intervention followed by a 21 year-old amateur bodybuilding competitor to improve body composition, resting and exercise fat oxidation, and muscular strength that does not involve use of any of the above mentioned methods. Over a 14-week period, the Athlete was provided with a scientifically designed nutrition and conditioning plan that encouraged him to (i) consume a variety of foods; (ii) not neglect any macronutrient groups; (iii) exercise regularly but not excessively and; (iv) incorporate rest days into his conditioning regime. This strategy resulted in a body mass loss of 11.7 kg’s, corresponding to a 6.7 kg reduction in fat mass and a 5.0 kg reduction in fat-free mass. Resting metabolic rate decreased from 1993 kcal/d to 1814 kcal/d, whereas resting fat oxidation increased from 0.04 g/min to 0.06 g/min. His capacity to oxidize fat during exercise increased more than two-fold from 0.24 g/min to 0.59 g/min, while there was a near 3-fold increase in the corresponding exercise intensity that elicited the maximal rate of fat oxidation; 21% V̇ O2max to 60% V̇ O2max. Hamstring concentric peak torque decreased (1.7 to 1.5 Nm/kg), whereas hamstring eccentric (2.0 Nm/kg to 2.9 Nm/kg), quadriceps concentric (3.4 Nm/kg to 3.7 Nm/kg) and quadriceps eccentric (4.9 Nm/kg to 5.7 Nm/kg) peak torque all increased. Psychological mood-state (BRUMS scale) was not negatively influenced by the intervention and all values relating to the Athlete’s mood-state remained below average over the course of study. This intervention shows that a structured and scientifically supported nutrition strategy can be implemented to improve parameters relevant to bodybuilding competition and importantly the health of competitors, therefore questioning the conventional practices of bodybuilding preparation
    corecore